

SUNY

Upstate Cancer Center

Syracuse, New York

AE Senior Thesis Michael Kostick | Structural Option April 10th, 2012

EwingCole

- Introduction
- Existing Structure
- Thesis Proposal
- Structural Depth
- Risk Mitigation / Site Redesign Breadth
- Conclusions
- Questions & Comments

EwingCole

EwingCole

- Introduction
- Existing Structure
- Thesis Proposal
- Structural Depth
- Risk Mitigation / Site Redesign Breadth
- Conclusions
- Questions & Comments

Introduction

Building Information:

- 5 stories 90,000 square feet
- Healthcare Facility
- Syracuse, New York
- \$ 74 Million
- Construction: March 2011- September 2013

Project Team:

- Owner: SUNY Upstate Medical University
- Architect / Engineer: EwingCole
- Construction Manager: LeChase Construction, LLC

- Introduction
 - Existing Structure
- Thesis Proposal
- Structural Depth
- Risk Mitigation / Site Redesign Breadth
- Conclusions
- Questions & Comments

Existing Structural System

Foundation:

Drilled Caissons (5000 psi)

- •30" 48" Diameter
- Socketed 24" into dolostone bedrock

Grade Beams (4000 psi)

Slab-On-Grade (4000 psi)

•6" – 8" deep

EwingCole

- Introduction
 - Existing Structure
- Thesis Proposal
- Structural Depth
- Risk Mitigation / Site Redesign Breadth
- Conclusions
- Questions & Comments

Existing Structural System

Gravity Force Resisting System:

Structural Grid:

- •30'-0" x 30'-0" (Typical)
- •Infill beams at 10'-0" o.c.

Flooring System

•3" 20 gauge composite metal deck with 3 1/4" lightweight topping (Typical)

Framing Members

Wide Flange Shapes

- Beams / Girders: Composite action W12's W30's
- Columns: Spliced at 36'-0" W12's and W14's

11 EXPANSION JOINT LOCATION AT SECOND FLOOR

Existing Structural System

Lateral Force Resisting System:

Central Tower:

•Ordinary steel braced frames, N-S; E-W (Blue)
Wide flange shapes

11 EXPANSION JOINT LOCATION AT SECOND FLOOR

Existing Structural System

Lateral Force Resisting System:

Central Tower:

•Ordinary steel braced frames, N-S; E-W (Blue) Wide flange shapes

Central Plant:

- Ordinary steel braced frames, E-W (Blue)
 Wide flange shapes
- Moment frames, N-S (Red)
 Bolted connections

Thesis Proposal

Structural Depth

- Redesign using reinforced concrete
- Select floor system from Technical Report 2 alternatives:

Precast hollow core plank Two-way flat slab One-way pan joists

- Redesign gravity force resisting system
- Redesign lateral force resisting system
- Design to resist progressive collapse
 U.S. D.o.D. requirements
- Intent is to reduce structural system cost

Thesis Proposal

Breadth 1 – Risk Mitigation & Site Redesign

- Review current site for potential security issues
- Implement site improvements to increase protection

Breadth 2 – Building Envelope Redesign

- Design NE façade for building loads
- Compare heat flow through original and redesigned façade.

Thesis Proposal

Breadth 1 – Risk Mitigation & Site Redesign

- Review current site for potential security issues
- Implement site improvements to increase protection

Breadth 2 – Building Envelope Redesign

- Design NE façade for building loads
- Compare heat flow through original and redesigned façade.

MAE Requirements

- ETABS and SAP2000 computer models: AE 597 Computer Modeling of Building Structures
- Façade redesign: AE 542 Building Enclosure Science and Design
- Progressive collapse: Independent research

Gravity Redesign

Gravity System Redesign

Floor System Chosen: Two-way slab

- Lowest cost
- No changes to architecture
- Reduced floor assembly thickness

Two-way slab designed with beams

- Integration with lateral system
- Integration with progressive collapse design

Modified column / beam layout

Gravity Loads

Dead Loads

- Member self weight
- Super imposed: 25 psf (Floors)
- Façade weight

Live Loads

•100 psf (Floors)

Snow Loads

•Flat roof snow load: 42 psf

Gravity Redesign

Slab Design

All slabs – 4000psi compressive strength

Slab designed using Equivalent Frame Method

- •Slab thickness: 9"
- •Reinforcement: #5's ASTM A615 top & bottom Middle & Column strips

Punching shear resisted through gravity beams

Gravity Redesign

Beam / Column Design

- •All beams / columns 4000 psi
- Initial beam sizes:

Depth: 2.5 x slab depth = 24"

Width: Trial column width = 22"

- Flexural reinforcement limited to #9 ASTM A615
- Shear stirrups: #3 @ 3" o.c.
- Columns sized for pure axial loads
 Square: 24" x 24"
 (16) # 10 ASTM A615 Equal all faces
 Confinement reinforcement: #3 Hoops @ 18"
 vertically

- Introduction
- Existing Structure
- Thesis Proposal
 - Structural Depth
- Risk Mitigation / Site Redesign Breadth
- Conclusions
- Questions & Comments

Lateral Redesign

Lateral System Redesign

- •Gravity system is base design for lateral system
- Lateral forces resisted through reinforced concrete moment frames, N-S; E-W
 Creates open floor plan
 Aid in progressive collapse design
- Computer modeling assumptions:

 Only full height frames modeled
 Cracked member sections
 Rigid end offset rigid zone factor = 0.5

Lateral Loads – ASCE 7-10

- Wind Load: Exposure B
 - •Roof height = 72'
 - •Max pressure = 41 psf
 - •Controlling base shear = 529 kips
 - •Drift limited to: H/400
- •Seismic Load: SDC C
 - •Building weight = 19,760 kips
 - •Base shear = 765 kips
 - •Drift limited to: 0.01*h_{sx}

Lateral Redesign

Lateral System Redesign

- Gravity system is base design for lateral system
 Lateral forces resisted through reinforced
- Lateral forces resisted through reinforced concrete moment frames, N-S; E-W
 Creates open floor plan
 Aid in progressive collapse design
- •Computer modeling assumptions:
 Only full height frames modeled
 Cracked member sections
 Rigid end offset rigid zone factor = 0.5

- Introduction
- Existing Structure
- Thesis Proposal
 - Structural Depth
- Risk Mitigation / Site Redesign Breadth
- Conclusions
- Questions & Comments

Lateral Redesign

Beam Design

Controlling load combination:

•1.2D + 1.0E + L + 0.2S (ASCE 7-10)

ACI 318-08: Intermediate moment frames (SDC-C)

- Two continuous bars along beam
- Hoops for shear

22" x 24":

•Continuous bars – Top: (2) #9 ASTM A615 Bottom: (2) #7's

•Shear: #5 closed hoops @ 3" o.c. (worst case)

•ρ limited to 2.5%

Lateral Redesign

Column Design – Axial & Bending

- Considered second order & slenderness
- Two column designations: Top, Bottom
- ρ targeted between 1% 8%
- SpColumn

```
Bottom Columns: Ground – 3<sup>rd</sup>
```

- •24" x 24"
- •(16) #11 ASTM A615 equal all faces
- •#4 Hoops @ 6" o.c. Transverse

Top Columns: 4th - Roof

- •24" x 24"
- •(16) #10 ASTM A615 equal all faces
- •#4 Hoops @ 6" o.c. Transverse

- Introduction
- Existing Structure
- Thesis Proposal
 - Structural Depth
- Risk Mitigation / Site Redesign Breadth
- Conclusions
- Questions & Comments

Foundation Redesign

Caissons:

- 48" diameter capacity = 628 kips
- Use (39) 48" diameter caissons along typical grid intersections

Progressive Collapse Design

Progressive Collapse Design Requirements:

(UFC 4-023-03)

Occupancy Category IV

- •Tie Force Method
- Alternative Path Analysis
- •Enhanced Local Resistance

Selected Ties:

- Internal = #6 ASTM A615 @ 9" o.c. (both directions)
- Peripheral = varies per opening
- Vertical = satisfied by existing

Tie Force Method

Load Combination: $W_F = 1.2D + .5L$

Perform analysis For:

•Internal Ties: Fi = 3W_FL_i

Peripheral Ties: F_i = 6W_FL_iL_p

•Vertical Ties: $F_v = A_T W_F$

Provide ties such that $\phi R_n > F$

•
$$\Phi R_n = \Phi \Omega A_s F_y$$

• Ω = 1.25 (Over strength Factor – ASCE 41 – 60 ksi steel)

- Introduction
- Existing Structure
- Thesis Proposal
 - Structural Depth
- Risk Mitigation / Site Redesign Breadth
- Conclusions
- Questions & Comments

Progressive Collapse Design

Progressive Collapse Design Requirements: (UFC 4-023-03)

Occupancy Category IV

- •Tie Force Method
- Alternative Path Analysis
- •Enhanced Local Resistance

Alternative Path Analysis

Load Combination:

•
$$G_N = \Omega_N$$
 [(0.9 or 1.2)*D + (0.5*L or 0.2*S)]
• Ω_N = Dynamic increase factor

•G =
$$(0.9 \text{ or } 1.2)*D + (0.5*L \text{ or } 0.2*S)$$

$$L_{LAT} = 0.002 \times \Sigma P$$

Alternative Path Method (Non Linear Static)

Alternative Path Analysis – Utilizing SAP 2000 Non Linear

- Model Primary and Secondary Members
- Assign hinges in accordance with ASCE 41
- Check member ability to span missing elements

Progressive Collapse Design

Redesigned members:

- •Spandrel Beams: 22" x 28"
 - •Top & Bottom: (4) # 8's & (5) # 9's
- •Framing into spandrel beams: 22" x 24"
 - •Top & Bottom: (4) # 8's & (5) # 9's

Progressive Collapse Design Requirements: (UFC 4-023-03)

Occupancy Category IV

- •Tie Force Method
- Alternative Path Analysis
- •Enhanced Local Resistance

Alternative Path Analysis

•Load Combination:

•
$$G_N = \Omega_N [(0.9 \text{ or } 1.2)*D + (0.5*L \text{ or } 0.2*S)]$$

•
$$\Omega_N$$
 = Dynamic increase factor

•G =
$$(0.9 \text{ or } 1.2)*D + (0.5*L \text{ or } 0.2*S)$$

$$\cdot L_{I \Delta T} = 0.002 \times \Sigma P$$

Alternative Path Method (Non Linear Static)

Alternative Path Analysis – Utilizing SAP 2000 Non Linear

- Model Primary and Secondary Members
- Assign hinges in accordance with ASCE 41
- Check member ability to span missing elements

- Introduction
- Existing Structure
- Thesis Proposal
 - Structural Depth
- Risk Mitigation / Site Redesign Breadth
- Conclusions
- Questions & Comments

Progressive Collapse Design

Progressive Collapse Design Requirements: (UFC 4-023-03)

Occupancy Category IV

- •Tie Force Method
- Alternative Path Analysis
- •Enhanced Local Resistance

Enhanced Local Resistance

Occupancy Category IV:

- •All perimeter columns, first two stories above grade
- •Enhanced flexural resistance (EFR)
 - •EFR = larger of:
 - •2.0*baseline flexural resistance
 - Alternative path flexural resistance

•New column size:

•30" x 30" - (20) #14 ASTM A 615 - equal all faces

- Introduction
- Existing Structure
- Thesis Proposal
 - Structural Depth
- Risk Mitigation / Site Redesign Breadth
- Conclusions
- Questions & Comments

Structural Depth

Summary:

```
Slabs: 9" thick with #6's @ 9" o.c. (Typical Floor) (Tie Force Method)
```

Beams:

```
Spandrel: 22" x 28"
(Alternative Path Analysis)
Other: 22" x 24"
```

Columns:

```
•Top: 24" x 24" – (16) #10's
•Bottom: 24" x 24" – (16) #11's
•Perimeter (1st & 2nd): 30" x 30" – (20) # 14's (Enhanced Local Resistance)
```

Cost Analysis:

Analyzed typical bay and adjusted for entire building RS Means Costworks

Steel estimate: \$3,033,685

Concrete estimate: \$3,449,330

Includes 5 percent addition for progressive collapse requirements

Difference: \$415,644

Risk Mitigation Site Redesign (Breadth 1)

U.S. General Services Administration (GSA)

Site Security Design Guide

Areas of Concern / Site Improvements:

- Narrow East Adams Street
- •Reduce speed on East Adams Street
- •Remove on-site parking
- Obstruct path along East Adams Street
 - •Bollards, Planters, Trees, Benches
 - Collapsible fill under pavers
- •Create plaza / increase standoff distance to NE façade
- Limit site access with security gate

- Introduction
- Existing Structure
- Thesis Proposal
- Structural Depth
 - Risk Mitigation / Site Redesign Breadth
- Conclusions
- Questions & Comments

Risk Mitigation Site Redesign (Breadth 1)

Risk Mitigation Site Redesign (Breadth 1)

- Introduction
- Existing Structure
- Thesis Proposal
- Structural Depth
- Risk Mitigation / Site Redesign Breadth
 - Conclusions
- Questions & Comments

Conclusions

- •Superstructure successfully redesigned using reinforced concrete
- •Structure meets requirements of D.o.D. for progressive collapse
- •Alternative concrete structure costs extra \$415,644

 Does not include foundation improvement cost

The original steel superstructure is more cost effective; however it was not designed to meet progressive collapse requirements.

Questions & Comments

<u>Acknowledgements</u>

- •SUNY Upstate Medical University
 - •Mr. Burton Thomas & Mr. Marius Dumitran
- EwingCole
 - •Mr. Jason Wiley & Mr. Patrick Brunner
- •Penn State Architectural Engineering Faculty
 - •Dr. Richard Behr, Dr. Ali Memari, Dr. Linda Hanagan
 - •Professor Kevin Parfitt, Professor Robert Holland
 - •Ryan Solnosky
- My family and friends